Kamis, 17 Oktober 2019

ASAM BASA

Teori Asam Basa

Asam dan basa adalah dua golongan zat kimia yang sangat umum ditemukan di sekitar kita. Sebagai contoh, cuka, asam sitrun, dan asam dalam lambung tergolong asam, sedangkan kapur sirih dan soda api tergolong basa. Asam dan basa memiliki sifat-sifat yang berbeda. Pada mulanya, asam dan basa dibedakan berdasarkan rasanya, di mana asam terasa masam sedangkan basa terasa pahit dan licin seperti sabun. Namun, secara umum zat-zat asam maupun basa bersifat korosif dan beracun — khususnya dalam bentuk larutan dengan kadar tinggi — sehingga sangat berbahaya jika diuji sifatnya dengan metode merasakannya.Seiring perkembangan ilmu pengetahuan dan teknologi, pembedaan asam dan basa pun dapat dilakukan dengan menggunakan indikator seperti kertas lakmus dan indikator universal ataupun instrumen pH meter. Larutan asam akan memerahkan kertas lakmus biru, sedangkan larutan basa akan membirukan kertas lakmus merah. Pada pengujian zat dengan pH meter, larutan asam akan menunjukkan pH lebih kecil dari 7, sedangkan larutan basa akan menunjukkan pH lebih besar dari 7. Larutant dengan pH sama dengan 7 disebut netral.

Teori Asam Basa Arrhenius

Teori ini pertama kalinya dikemukakan pada tahun 1884 oleh Svante August Arrhenius. Menurut Arrhenius, definisi dari asam dan basa, yaitu:
  • asam adalah senyawa yang jika dilarutkan dalam air melepaskan ion H+.
  • basa adalah senyawa yang jika dilarutkan dalam air melepaskan ion OH.
Gas asam klorida (HCl) yang sangat larut dalam air tergolong asam Arrhenius, sebagaimana HCl dapat terurai menjadi ion H+dan Cl di dalam air. Berbeda halnya dengan metana (CH4) yang bukan asam Arrhenius karena tidak dapat menghasilkan ion H+ dalam air meskipun memiliki atom H. Natrium hidroksida (NaOH) termasuk basa Arrhenius, sebagaimana NaOH merupakan senyawa ionik yang terdisosiasi menjadi ion Na+ dan OH ketika dilarutkan dalam air. Konsep asam dan basa Arrhenius ini terbatas pada kondisi air sebagai pelarut.

Teori Asam Basa Brønsted–Lowry

Pada tahun 1923, Johannes N. Brønsted dan Thomas M. Lowry secara terpisah mengajukan definisi asam dan basa yang lebih luas. Konsep yang diajukan tersebut didasarkan pada fakta bahwa reaksi asam–basa melibatkan transfer proton (ion H+) dari satu zat ke zat lainnya. Proses transfer proton ini selalu melibatkan asam sebagai pemberi/donor proton dan basa sebagai penerima/akseptor proton. Jadi, menurut definisi asam basa Brønsted–Lowry,
  • asam adalah donor proton.
  • basa adalah akseptor proton.
Jika ditinjau dengan teori Brønsted–Lowry, pada reaksi ionisasi HCl ketika dilarutkan dalam air, HCl berperan sebagai asam dan H2O sebagai basa.
HCl(aq) + H2O(l) → Cl(aq) + H3O+(aq)HCl berubah menjadi ion Cl setelah memberikan proton (H+) kepada H2O. H2O menerima proton dengan menggunakan sepasang elektron bebas pada atom O untuk berikatan dengan H+ sehingga terbentuk ion hidronium (H3O+).
Sedangkan pada reaksi ionisasi NH3 ketika dilarutkan dalam air, NH3 berperan sebagai basa dan H2O sebagai asam.
NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH(aq)
NH3 menerima proton (H+) dari H2O dengan menggunakan sepasang elektron bebas pada atom N untuk berikatan dengan H+ sehingga terbentuk ion ammonium (NH4+). H2O berubah menjadi ion OH setelah memberikan proton (H+) kepada NH3.
teori asam basa bronsted lowry
Dari kedua contoh tersebut terlihat bahwa (1) asam Brønsted–Lowry harus mempunyai atom hidrogen yang dapat terlepas sebagai ion H+; dan (2) basa Brønsted–Lowry harus mempunyai pasangan elektron bebas yang dapat berikatan dengan ion H+.Kelebihan definisi oleh Brønsted–Lowry dibanding definisi oleh Arrhenius adalah dapat menjelaskan reaksi-reaksi asam–basa dalam fase gas, padat, cair, larutan dengan pelarut selain air, ataupun campuran heterogen. Sebagai contoh, reaksi antara gas NH3 (basa) dan gas HCl (asam) membentuk asap NH4Cl.
NH3(g) + HCl(g) → NH4Cl(s)
Beberapa zat dapat bertindak sebagai asam, namun juga dapat sebagai basa pada reaksi yang lain, misalnya H2O, HCO3, dan H2PO4. Zat demikian disebut amfiprotik. Suatu zat amfiprotik (misalnya H2O) akan bertindak sebagai asam bila direaksikan dengan zat yang lebih basa darinya (misalnya NH3) dan bertindak sebagai basa bila direaksikan dengan zat yang lebih asam darinya (misalnya HCl).

Teori Asam Basa Lewis

Pada tahun 1923, G. N. Lewis mengemukakan teori asam basa yang lebih luas dibanding kedua teori sebelumnya dengan menekankan pada pasangan elektron yang berkaitan dengan struktur dan ikatan. Menurut definisi asam basa Lewis,
  • asam adalah akseptor pasangan elektron.
  • basa adalah donor pasangan elektron.
Berdasarkan definisi Lewis, asam yang berperan sebagai spesi penerima pasangan elektron tidak hanya H+. Senyawa yang memiliki orbital kosong pada kulit valensi seperti BF3 juga dapat berperan sebagai asam. Sebagai contoh, reaksi antara BF3 dan NH3 merupakan reaksi asam–basa, di mana BF3 sebagai asam Lewis dan NH3 sebagai basa Lewis. NH3 memberikan pasangan elektron kepada BF3 sehingga membentuk ikatan kovalen koordinasi antara keduanya.
reaksi bf3 dan nh3
Kelebihan definisi asam basa Lewis adalah dapat menjelaskan reaksi-reaksi asam–basa lain dalam fase padat, gas, dan medium pelarut selain air yang tidak melibatkan transfer proton. Misalnya, reaksi-reaksi antara oksida asam (misalnya CO2 dan SO2) dengan oksida basa (misalnya MgO dan CaO), reaksi-reaksi pembentukan ion kompleks seperti [Fe(CN)6]3−, [Al(H2O)6]3+, dan [Cu(NH3)4]2+, dan sebagian reaksi dalam kimia organik.

Indikator asam-basa

Tabel berikut ini berisi beberapa indikator pH yang umum digunakan di laboratorium. Indikator biasanya memberi perubahan warna pada nilai pH yang tertulis pada nilai transisi. Contohnya, fenol merah menghasilkan warna jingga antara pH 6.8 dan pH 8.4. Rentang transisi mungkin berbeda sedikit bergantung pada konsentrasi indikator dalam larutan dan pada suhu di mana indikator tersebut digunakan. Gambar di sebelah kanan menunjukkan rentang dan perubahan warna yang terjadi pada indikator tersebut.[4]

Perubahan warna pada indikator Bromotimol biru, Metil jingga dan Fenolftalein
IndikatorWarna pada pH
batas bawah
Batas
transisi bawah
Batas
transisi atas
Warna pada pH
batas atas
Gentian violet (Metil ungu 10B)kuning0.02.0biru-violet
Malasit hijau (transisi pertama)kuning0.02.0hijau
Malasit hijau (transisi kedua)hijau11.614.0tak berwarna
Timol biru (transisi pertama)merah1.22.8kuning
Timol biru (transisi kedua)kuning8.09.6biru
Metil kuningmerah2.94.0kuning
Bromofenol birukuning3.04.6biru
Merah kongobiru-violet3.05.0merah
Metil jinggamerah3.14.4kuning
Bromokresol hijaukuning3.85.4biru
Metil merahmerah4.46.2kuning
Metil unguungu4.85.4hijau
Azolitminmerah4.58.3biru
Bromokresol ungukuning5.26.8ungu
Bromotimol birukuning6.07.6biru
Fenol merahkuning6.48.0merah
Merah netralmerah6.88.0kuning
Naftolftaleinmerah pucah7.38.7biru kehijauan
Kresol merahkuning7.28.8ungu-kemerahan
Kresolftaleintidak berwarna8.29.8ungu
Fenolftaleintidak berwarna8.310.0ungu-merah muda
Timolftaleintidak berwarna9.310.5biru
Alizarin kuning Rkuning10.212.0merah
Indigo carminebiru11.413.0kuning

Indikator pH alamSunting


Struktur umum senyawaan antosianin
Banyak tumbuhan yang mengandung zat kimia yang berasal dari senyawa famili antosianin yang berwarna secara alami. Mereka berwarna merah dalam larutan asam dan biru dalam larutan basa. Antosianin dapat diekstrak dengan air atau pelarut lain dari banyak tumbuhan berwarna atau bagian tumbuhan, termasuk dari daun (kubis merah); bunga (geraniumpoppy, atau kelopak mawar); beri (blueberryblackcurrant); dan batang (rhubarb). Ekstraksi antosianin dari tanaman rumah tangga, terutama kubis merah, untuk membentuk indikator pH mentah adalah pengantar kimia demonstrasi yang populer.
Dahftar pustaka 
https://id.m.wikipedia.org/wiki/Indikator_asam-basa
https://www.studiobelajar.com/teori-asam-basa/

2 komentar: